MC10EP195, MC100EP195

3.3V ECL Programmable Delay Chip

The MC10/100EP195 is a Programmable Delay Chip (PDC) designed primarily for clock deskewing and timing adjustment. It provides variable delay of a differential NECL/PECL input transition.

The delay section consists of a programmable matrix of gates and multiplexers as shown in the logic diagram, Figure 3. The delay increment of the EP195 has a digitally selectable resolution of about 10 ps and a net range of up to 10.2 ns . The required delay is selected by the 10 data select inputs $\mathrm{D}[9: 0]$ values and controlled by the LEN (pin 10). A LOW level on LEN allows a transparent LOAD mode of real time delay values by $\mathrm{D}[9: 0]$. A LOW to HIGH transition on LEN will LOCK and HOLD current values present against any subsequent changes in D [10:0]. The approximate delay values for varying tap numbers correlating to D0 (LSB) through D9 (MSB) are shown in Table 6 and Figure 4.

Because the EP195 is designed using a chain of multiplexers it has a fixed minimum delay of 2.2 ns . An additional pin D10 is provided for controlling Pins 14 and 15, CASCADE and CASCADE, also latched by LEN, in cascading multiple PDCs for increased programmable range. The cascade logic allows full control of multiple PDCs. Switching devices from all " 1 " states on $\mathrm{D}[0: 9]$ with SETMAX LOW to all " 0 " states on $\mathrm{D}[0: 9]$ with SETMAX HIGH will increase the delay equivalent to "D0", the minimum increment.

Select input pins $\mathrm{D}[10: 0]$ may be threshold controlled by combinations of interconnects between $\mathrm{V}_{\mathrm{EF}}(\mathrm{pin} 7)$ and $\mathrm{V}_{\mathrm{CF}}(\operatorname{pin} 8)$ for LVCMOS, ECL, or LVTTL level signals. For LVCMOS input levels, leave V_{CF} and V_{EF} open. For ECL operation, short V_{CF} and V_{EF} (Pins 7 and 8). For LVTTL level operation, connect a 1.5 V supply reference to V_{CF} and leave open V_{EF} pin. The 1.5 V reference voltage to V_{CF} pin can be accomplished by placing a $2.2 \mathrm{k} \Omega$ resistor between V_{CF} and V_{EE} for a 3.3 V power supply.

The $V_{B B}$ pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

- Maximum Input Clock Frequency $>1.2 \mathrm{GHz}$ Typical
- Programmable Range: 0 ns to 10 ns
- Delay Range: 2.2 ns to 12.2 ns
- 10 ps Increments
- PECL Mode Operating Range:

$$
\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}
$$

- NECL Mode Operating Range:

$$
\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { with } \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V} \text { to }-3.6 \mathrm{~V}
$$

- Open Input Default State
- Safety Clamp on Inputs
- A Logic High on the EN Pin Will Force Q to Logic Low
- D[10:0] Can Accept Either ECL, LVCMOS, or LVTTL Inputs
- V_{BB} Output Reference Voltage
- Pb-Free Packages are Available

MC10EP195, MC100EP195

Figure 1. 32-Lead LQFP Pinout (Top View)

Figure 2. 32-Lead QFN (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Default State	Description
$\begin{gathered} 23,25,26,27, \\ 29,30,31,32, \\ 1,2 \end{gathered}$	D[0:9]	LVCMOS, LVTTL, ECL Input	Low	Single-Ended Parallel Data Inputs [0:9]. Internal $75 \mathrm{k} \Omega$ to V_{EE}. (Note 1)
3	D[10]	LVCMOS, LVTTL, ECL Input	Low	Single-Ended CASCADE/CASCADE Control Input. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$ (Note 1)
4	IN	ECL Input	Low	Noninverted Differential Input. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
5	IN	ECL Input	High	Inverted Differential Input. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $36.5 \mathrm{k} \Omega$ to V_{cc}.
6	$V_{B B}$	-	-	ECL Reference Voltage Output
7	$\mathrm{V}_{\text {EF }}$	-	-	Reference Voltage for ECL Mode Connection
8	$\mathrm{V}_{\text {CF }}$	-	-	LVCMOS, ECL, OR LVTTL Input Mode Select
9, 24, 28	V_{EE}	-	-	Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. (Note 2)
13, 18, 19, 22	V_{CC}	-	-	Positive Supply Voltage. All V_{CC} Pins must be externally Connected to Power Supply to Guarantee Proper Operation. (Note 2)
10	LEN	ECL Input	Low	Single-ended D pins LOAD / HOLD input. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
11	SETMIN	ECL Input	Low	Single-ended Minimum Delay Set Logic Input. Internal $75 \mathrm{k} \Omega$ to V_{EE}. (Note 1)
12	SETMAX	ECL Input	Low	Single-ended Maximum Delay Set Logic Input. Internal $75 \mathrm{k} \Omega$ to V_{EE}. (Note 1)
14	CASCADE	ECL Output	-	Inverted Differential Cascade Output for D[10]. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
15	CASCADE	ECL Output	-	Noninverted Differential Cascade Output. for D[10] Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
16	EN	ECL Input	Low	Single-ended Output Enable Pin. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
17	NC	-	-	No Connect. The NC Pin is Electrically Connected to the Die and "MUST BE" Left Open
21	Q	ECL Output	-	Noninverted Differential Output. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.
20	Q	ECL Output	-	Inverted Differential Output. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$.

1. SETMIN will override SETMAX if both are high. SETMAX and SETMIN will override all $D[0: 10]$ inputs.
2. All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

MC10EP195, MC100EP195

Table 2. CONTROL PIN

Pin	State	Function
EN	LOW (Note 3)	Input Signal is Propagated to the Output
	HIGH	Output Holds Logic Low State
	LOW (Note 3)	Transparent or LOAD mode for real time delay values present on D[0:10].
	HIGH	LOCK and HOLD mode for delay values on D[0:10]; further changes on D[0:10] are not recognized and do not affect delay.
SETMIN	LOW (Note 3)	Output Delay set by D[0:10]
	HIGH	Set Minimum Output Delay
SETMAX	LOW (Note 3)	Output Delay set by D[0:10]
	HIGH	Set Maximum Output Delay
D10	LOW (Note 3)	CASCADE Output LOW, CASCADE Output HIGH
	HIGH	CASCADE Output LOW, CASCADE Output HIGH

3. Internal pulldown resistor will provide a logic LOW if pin is left unconnected.

Table 3. CONTROL D[0:10] INTERFACE

V_{CF}	V_{EF} Pin (Note 4)	ECL Mode
V_{CF}	No Connect	LVCMOS Mode
V_{CF}	$1.5 \mathrm{~V} \pm 100 \mathrm{mV}$	LVTTL Mode (Note 5)

4. Short V_{CF} (pin 8) and V_{EF} (pin 7).
5. When Operating in LVTTL Mode, the reference voltage can be provided by connecting an external resistor, R_{CF} (suggested resistor value is $2.2 \mathrm{k} \Omega \pm 5 \%$), between V_{CF} and $\mathrm{V}_{E E}$ pins.

Table 4. DATA INPUT ALLOWED OPERATING VOLTAGE MODE TABLE

POWER SUPPLY	CONTROL DATA SELECT INPUTS PINS (D [0:10])			
	LVCMOS	LVTTL	LVPECL	LVNECL
PECL Mode Operating Range	YES	YES	YES	N/A
NECL Mode Operating Range	N/A	N/A	N/A	YES

Table 5. ATTRIBUTES

Characteristics	Value	
Internal Input Pulldown Resistor (R1)	$75 \mathrm{k} \Omega$	
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{gathered} >2 \mathrm{kV} \\ >100 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 6)	Pb Pkg	Pb-Free Pkg
LQFP-32	Level 2	Level 2
QFN-32	-	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count	1217 Devices	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

6. For additional information, see Application Note AND8003/D.

MC10EP195, MC100EP195

Figure 3. Logic Diagram

MC10EP195, MC100EP195

Table 6. THEORETICAL DELAY VALUES

D(9:0) Value	SETMIN	SETMAX	Programmable Delay*
XXXXXXXXXX	H	L	0 ps
0000000000	L	L	0 ps
0000000001	L	L	10 ps
0000000010	L	L	20 ps
0000000011	L	L	30 ps
0000000100	L	L	40 ps
0000000101	L	L	50 ps
0000000110	L	L	60 ps
0000000111	L	L	70 ps
0000001000	L	L	80 ps
0000010000	L	L	160 ps
0000100000	L	L	320 ps
0001000000	L	L	640 ps
0010000000	L	1280 ps	
0100000000	L	H	2560 ps
1000000000			5120 ps
111111111	L		10230 ps
$X X X X X X X X X$			10240 ps

*Fixed minimum delay not included.

MC10EP195, MC100EP195

Figure 4. Measured Delay vs. Select Inputs

Table 7. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
$\mathrm{V}_{\text {EE }}$	Negative Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-6	V
V ,	Positive Mode Input Voltage Negative Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 6 \\ -6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{BB}	$\mathrm{V}_{\text {BB }}$ Sink/Source			± 0.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{aligned} & \hline 0 \mathrm{lfpm} \\ & 500 \mathrm{lfpm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { LQFP-23 } \\ \text { LQFP-23 } \end{array}$	$\begin{aligned} & 80 \\ & 55 \end{aligned}$	$\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	LQFP-23	12 to 17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	$\begin{array}{\|l\|} \hline 0 \text { lfpm } \\ 500 \text { lfpm } \end{array}$	$\begin{aligned} & \text { QFN-32 } \\ & \text { QFN-32 } \end{aligned}$	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	$\begin{array}{\|l\|l} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	2S2P	QFN-32	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder $\begin{array}{r}\text { Pb } \\ \\ \text { Pb-Free }\end{array}$	$\begin{aligned} & <2 \text { to } 3 \mathrm{sec} @ 248^{\circ} \mathrm{C} \\ & <2 \text { to } 3 \mathrm{sec} @ 260^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

MC10EP195, MC100EP195

Table 8. 10EP DC CHARACTERISTICS, PECL $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0 \mathrm{~V}$ (Note 7)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	100	145	175	100	150	180	100	150	180	mA
V_{OH}	Output HIGH Voltage (Note 8)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 8)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V_{IH}	Input HIGH Voltage (Single-Ended) LVPECL LVCMOS LVTTL	$\begin{aligned} & 2090 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2415 \\ & 3300 \\ & 3300 \end{aligned}$	$\begin{aligned} & 2155 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2480 \\ & 3300 \\ & 3300 \end{aligned}$	$\begin{aligned} & 2215 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2540 \\ & 3300 \\ & 3300 \end{aligned}$	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended) LVPECL LVCMOS LVTTL	$\begin{gathered} 1365 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 1690 \\ 800 \\ 800 \end{gathered}$	$\begin{gathered} 1430 \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & 1755 \\ & 800 \\ & 800 \end{aligned}$	$\begin{gathered} 1490 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 1815 \\ 800 \\ 800 \end{gathered}$	mV
$\mathrm{V}_{\text {BB }}$	ECL Output Voltage Reference	1790	1890	1990	1855	1955	2055	1915	2015	2115	mV
$\mathrm{V}_{\text {CF }}$	LVTTL Mode Input Detect Voltage	1.4	1.5	1.6	1.4	1.5	1.6	1.4	1.5	1.6	V
$\mathrm{V}_{\text {EF }}$	Reference Voltage for ECL Mode Connection	1900	2020	2150	1875	2080	2150	1850	2130	2150	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	2.0		3.3	2.0		3.3	2.0		3.3	V
I_{H}	Input HIGH Current (@ V $\mathrm{IHH}^{\text {) }}$			150			150			150	$\mu \mathrm{A}$
I_{IL}	Input LOW Current (@ V 1 IL) $\begin{array}{ll}\text { IN } \\ & \text { IN }\end{array}$	$\begin{array}{\|c} \hline 0.5 \\ -150 \end{array}$			$\begin{gathered} 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
7. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary +0.3 V to -0.3 V .
8. All loading with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2.0 \mathrm{~V}$.
9. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with $\mathrm{V}_{C C}$. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

MC10EP195, MC100EP195

Table 9. 10EP DC CHARACTERISTICS, NECL $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$ to -3.0 V (Note 10)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	100	145	175	100	150	180	100	150	180	mA
V_{OH}	Output HIGH Voltage (Note 11)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V_{OL}	Output LOW Voltage (Note 11)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V_{IH}	Input HIGH Voltage (Single-Ended) LVNECL	-1210		-885	-1145		-820	-1085		-760	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended) LVNECL	-1935		-1610	-1870		-1545	-1810		-1485	mV
V_{BB}	ECL Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
V_{EF}	Reference Voltage for ECL Mode Connection	-1400	-1280	-1250	-1425	-1220	-1250	-1450	-1170	-1250	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0		+2.0	0.0			0.0	V
I_{H}	Input HIGH Current (@ V_{IH})			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@ VIL) $\frac{\mathrm{IN}}{\mathrm{IN}}$	$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V .
11. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
12. $V_{I H C M R}$ min varies $1: 1$ with $V_{E E}, V_{I H C M R}$ max varies $1: 1$ with $V_{C C}$. The $V_{I H C M R}$ range is referenced to the most positive side of the differential input signal.

MC10EP195, MC100EP195

Table 10. 100EP DC CHARACTERISTICS, PECL $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 13)

	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	100	135	160	100	140	170	100	145	175	mA
V_{OH}	Output HIGH Voltage (Note 14)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 14)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V_{IH}	Input HIGH Voltage (Single-Ended) LVPECL CMOS TTL	$\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$	$\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$	$\begin{aligned} & 2075 \\ & 2000 \\ & 2000 \end{aligned}$		$\begin{aligned} & 2420 \\ & 3300 \\ & 3300 \end{aligned}$	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended) LVPECL CMOS TTL	$\begin{gathered} 1355 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 1675 \\ 800 \\ 800 \end{gathered}$	$\begin{gathered} 1490 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 1675 \\ 800 \\ 800 \end{gathered}$	$\begin{gathered} 1490 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 1675 \\ 800 \\ 800 \end{gathered}$	mV
V_{BB}	ECL Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
$\mathrm{V}_{\text {CF }}$	LVTTL Mode Input Detect Voltage	1.4	1.5	1.6	1.4	1.5	1.6	1.4	1.5	1.6	V
$\mathrm{V}_{\text {EF }}$	Reference Voltage for ECL Mode Connection	1900	2020	2150	1875	2080	2150	1850	2130	2150	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 15)	2.0		3.3	2.0		3.3	2.0		3.3	V
$I_{1 H}$	Input HIGH Current (@ V $\mathrm{IHH}^{\text {) }}$			150			150			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current (@V1L)V IN	$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{array}{\|c\|} \hline 0.5 \\ -150 \end{array}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
13. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V .
14. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
15. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{I H C M R}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{I H C M R}$ range is referenced to the most positive side of the differential input signal.

MC10EP195, MC100EP195

Table 11. 100EP DC CHARACTERISTICS, NECL $V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-3.3 \mathrm{~V}$ (Note 16)

	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current (Note 17)	100	135	160	100	140	170	100	145	175	mA
V_{OH}	Output HIGH Voltage (Note 18)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 18)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V_{IH}	Input HIGH Voltage (Single-Ended) LVNECL	-1225		-880	-1225		-880	-1225		-880	mV
V_{IL}	Input LOW Voltage (Single-Ended) LVNECL	-1945		-1625	-1945		-1625	-1945		-1625	mV
$\mathrm{V}_{\text {BB }}$	ECL Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V_{EF}	Reference Voltage for ECL Mode Connection	-1400	-1280	-1250	-1425	-1220	-1250	-1450	-1170	-1250	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	V
IIH	Input HIGH Current (@ V_{IH})			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@ VIL)	$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
16. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary +0.3 V to -0.3 V .
17. Required 500 lfpm air flow when using +5 V power supply. For $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{E E}\right)>3.3 \mathrm{~V}, 5 \Omega$ to 10Ω in line with V_{EE} required for maximum thermal protection at elevated temperatures. Recommend $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ operation at $\leq 3.8 \mathrm{~V}$.
18. All loading with 50Ω to $V_{C C}-2.0 \mathrm{~V}$.
19. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 12. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.6 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 20)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Frequency		1.2			1.2			1.2		GHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay IN to Q; D(0-10) = 0 $I N$ to $Q ; D(0-10)=1023$ EN to Q; D $(0-10)=0$ Do to CASCADE	$\begin{gathered} 1650 \\ 9500 \\ 1600 \\ 300 \end{gathered}$	$\begin{gathered} 2050 \\ 11500 \\ 2150 \\ 420 \end{gathered}$	$\begin{gathered} 2450 \\ 13500 \\ 2600 \\ 500 \end{gathered}$	$\begin{gathered} 1800 \\ 10000 \\ 1800 \\ 350 \end{gathered}$	$\begin{gathered} 2200 \\ 12200 \\ 2300 \\ 450 \end{gathered}$	$\begin{gathered} 2600 \\ 14000 \\ 2800 \\ 550 \end{gathered}$	$\begin{gathered} 1950 \\ 10800 \\ 2000 \\ 425 \end{gathered}$	$\begin{gathered} 2350 \\ 13300 \\ 2500 \\ 525 \end{gathered}$	$\begin{gathered} 2750 \\ 15800 \\ 3000 \\ 625 \end{gathered}$	ps
$t_{\text {Range }}$	$\begin{array}{\|l} \hline \text { Programmable Range } \\ \text { t PD } \left.^{(m a x}\right)-\mathrm{t}_{\text {PD }}(\min) \end{array}$	7850	9450		8200	10000		8850	10950		ps
$\Delta \mathrm{t}$	Step Delay (Note 21) D0 High D1 High D2 High D3 High D4 High D5 High D6 High D7 High D8 High D9 High		$\begin{gathered} 13 \\ 27 \\ 44 \\ 90 \\ 130 \\ 312 \\ 590 \\ 1100 \\ 2250 \\ 4500 \end{gathered}$			$\begin{gathered} 14 \\ 30 \\ 47 \\ 97 \\ 140 \\ 335 \\ 650 \\ 1180 \\ 2400 \\ 4800 \end{gathered}$			$\begin{gathered} 41 \\ 100 \\ 145 \\ 360 \\ 690 \\ 1300 \\ 2650 \\ 5300 \end{gathered}$		ps
mono	Monotonicity (Note 27)					TBD					
$\mathrm{t}_{\text {SKEW }}$	Duty Cycle Skew (Note 22) $\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$		25			25			25		ps
t_{s}	Setup Time D to LEN D to IN (Note 23) EN to IN (Note 24)	$\begin{aligned} & 200 \\ & 300 \\ & 300 \end{aligned}$	$\begin{gathered} 0 \\ 140 \\ 150 \end{gathered}$		$\begin{aligned} & 200 \\ & 300 \\ & 300 \end{aligned}$	$\begin{gathered} 0 \\ 160 \\ 170 \end{gathered}$		$\begin{aligned} & 200 \\ & 300 \\ & 300 \end{aligned}$	$\begin{gathered} 0 \\ 180 \\ 180 \end{gathered}$		ps
t_{h}	Hold Time LEN to D IN to EN (Note 25)	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{gathered} 60 \\ 250 \end{gathered}$		$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 100 \\ & 280 \end{aligned}$		$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{gathered} 80 \\ 300 \end{gathered}$		ps
t_{R}	Release Time EN to IN (Note 26) SET MAX to LEN SET MIN to LEN	$\begin{aligned} & 150 \\ & 400 \\ & 350 \end{aligned}$	$\begin{aligned} & -25 \\ & 200 \\ & 275 \end{aligned}$		$\begin{aligned} & 150 \\ & 400 \\ & 350 \end{aligned}$	$\begin{aligned} & -75 \\ & 250 \\ & 200 \end{aligned}$		$\begin{aligned} & 150 \\ & 400 \\ & 350 \end{aligned}$	$\begin{aligned} & -50 \\ & 300 \\ & 225 \end{aligned}$		ps
$\mathrm{t}_{\mathrm{j} \text { itter }}$	RMS Random Clock Jitter @ 1.2 GHz IN to Q; D(0:10) $=0$ or SETMIN IN to Q; D(0:10) = 1023 or SETMAX		$\begin{aligned} & 0.86 \\ & 0.89 \end{aligned}$			$\begin{aligned} & 1.16 \\ & 1.09 \end{aligned}$			$\begin{aligned} & 1.12 \\ & 1.02 \end{aligned}$		ps
V_{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
$\begin{array}{\|l\|l} \hline \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{f}} \end{array}$	$\begin{array}{r} \hline \text { Output Rise/Fall Time @ } 50 \mathrm{MHz} \\ 20-80 \%(Q) \\ 20-80 \% \text { (CASCADE) } \end{array}$	$\begin{gathered} 85 \\ 100 \end{gathered}$	$\begin{aligned} & 100 \\ & 140 \end{aligned}$	$\begin{aligned} & 135 \\ & 200 \end{aligned}$	$\begin{gathered} 85 \\ 110 \end{gathered}$	$\begin{aligned} & 110 \\ & 150 \end{aligned}$	$\begin{aligned} & 135 \\ & 200 \end{aligned}$	$\begin{gathered} 95 \\ 130 \end{gathered}$	$\begin{aligned} & 125 \\ & 170 \end{aligned}$	$\begin{aligned} & 155 \\ & 220 \end{aligned}$	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
20. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2.0 \mathrm{~V}$.
21. Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations of asserted delay control inputs will typically realize DO resolution steps across the specified programmable range.
22. Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.
23. This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.
24. This setup time is the minimum time that EN must be asserted prior to the next transition of $\operatorname{IN} / \mathbb{N}$ to prevent an output response greater than $\pm 75 \mathrm{mV}$ to that IN / \mathbb{N} transition.
25. This hold time is the minimum time that $E N$ must remain asserted after a negative going $I N$ or positive going \mathbb{N} to prevent an output response greater than $\pm 75 \mathrm{mV}$ to that $\mathrm{IN} / \mathrm{IN}$ transition.
26. This release time is the minimum time that EN must be deasserted prior to the next $I N / \mathbb{N}$ transition to ensure an output response that meets the specified IN to Q propagation delay and transition times.
27. The monotonicity indicates the increasing delay value for each binary count increment on the control inputs $\mathrm{D}[9: 0]$.

MC10EP195, MC100EP195

Figure 5. AC Reference Measurement

Cascading Multiple EP195s

To increase the programmable range of the EP195, internal cascade circuitry has been included. This circuitry allows for the cascading of multiple EP195s without the need for any external gating. Furthermore, this capability requires only one more address line per added E195. Obviously, cascading multiple programmable delay chips will result in a larger programmable range: however, this increase is at the expense of a longer minimum delay.

Figure 6 illustrates the interconnect scheme for cascading two EP195s. As can be seen, this scheme can easily be expanded for larger EP195 chains. The D10 input of the EP195 is the CASCADE control pin. With the interconnect scheme of Figure 6 when D10 is asserted, it signals the need for a larger programmable range than is achievable with a single device and switches output pin CASCADE HIGH and pin CASCADE LOW. The A11 address can be added to generate a cascade output for the next EP195. For a 2-device configuration, A11 is not required.

Figure 6. Cascading Interconnect Architecture

MC10EP195, MC100EP195

An expansion of the latch section of the block diagram is pictured in Figure 7. Use of this diagram will simplify the explanation of how the cascade circuitry works. When D10 of chip \#1 in Figure 6 is LOW this device's CASCADE output will also be low while the CASCADE output will be high. In this condition the SET MIN pin of chip \#2 will be asserted HIGH and thus all of the latches of chip \#2 will be reset and the device will be set at its minimum delay.

Chip \#1, on the other hand, will have both SET MIN and SET MAX deasserted so that its delay will be controlled entirely by the address bus A0-A9. If the delay needed is greater than can be achieved with 1023 gate delays
(11111111111 on the A0-A9 address bus) D10 will be asserted to signal the need to cascade the delay to the next EP195 device. When D10 is asserted, the SET MIN pin of chip \#2 will be deasserted and SET MAX pin asserted resulting in the device delay to be the maximum delay. Table 13 shows the delay time of two EP195 chips in cascade.

To expand this cascading scheme to more devices, one simply needs to connect the D10 pin from the next chip to the address bus and CASCADE outputs to the next chip in the same manner as pictured in Figure 6. The only addition to the logic is the increase of one line to the address bus for cascade control of the second programmable delay chip.

TO SELECT MULTIPLEXERS

Figure 7. Expansion of the Latch Section of the EP195 Block Diagram

MC10EP195, MC100EP195

Table 13. Delay Value of Two EP195 Cascaded

VARIABLE INPUT TO CHIP \#1 AND SETMIN FOR CHIP \#2												
INPUT FOR CHIP \#1												Total
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Delay Value	Delay Value
0	0	0	0	0	0	0	0	0	0	0	0 ps	4400 ps
0	0	0	0	0	0	0	0	0	0	1	10 ps	4410 ps
0	0	0	0	0	0	0	0	0	1	0	20 ps	4420 ps
0	0	0	0	0	0	0	0	0	1	1	30 ps	4430 ps
0	0	0	0	0	0	0	0	1	0	0	40 ps	4440 ps
0	0	0	0	0	0	0	0	1	0	1	50 ps	4450 ps
0	0	0	0	0	0	0	0	1	1	0	60 ps	4460 ps
0	0	0	0	0	0	0	0	1	1	1	70 ps	4470 ps
0	0	0	0	0	0	0	1	0	0	0	80 ps	4480 ps
0	0	0	0	0	0	1	0	0	0	0	160 ps	4560 ps
0	0	0	0	0	1	0	0	0	0	0	220 ps	4720 ps
0	0	0	0	1	0	0	0	0	0	0	640 ps	5040 ps
0	0	0	1	0	0	0	0	0	0	0	1280 ps	5680 ps
0	0	1	0	0	0	0	0	0	0	0	2560 ps	6960 ps
0	1	0	0	0	0	0	0	0	0	0	5120 ps	9520 ps
0	1	1	1	1	1	1	1	1	1	1	10230 ps	14630 ps

VARIABLE INPUT TO CHIP \#1 AND SETMAX FOR CHIP \#2												
INPUT FOR CHIP \#1												Total
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Delay Value	Delay Value
1	0	0	0	0	0	0	0	0	0	0	10240 ps	14640 ps
1	0	0	0	0	0	0	0	0	0	1	10250 ps	14650 ps
1	0	0	0	0	0	0	0	0	1	0	10260 ps	14660 ps
1	0	0	0	0	0	0	0	0	1	1	10270 ps	14670 ps
1	0	0	0	0	0	0	0	1	0	0	10280 ps	14680 ps
1	0	0	0	0	0	0	0	1	0	1	10290 ps	14690 ps
1	0	0	0	0	0	0	0	1	1	0	10300 ps	14700 ps
1	0	0	0	0	0	0	0	1	1	1	10310 ps	14710 ps
1	0	0	0	0	0	0	1	0	0	0	10320 ps	14720 ps
1	0	0	0	0	0	1	0	0	0	0	10400 ps	14800 ps
1	0	0	0	0	1	0	0	0	0	0	10560 ps	14960 ps
1	0	0	0	1	0	0	0	0	0	0	10880 ps	15280 ps
1	0	0	1	0	0	0	0	0	0	0	11520 ps	15920 ps
1	0	1	0	0	0	0	0	0	0	0	12800 ps	17200 ps
1	1	0	0	0	0	0	0	0	0	0	15360 ps	19760 ps
1	1	1	1	1	1	1	1	1	1	1	20470 ps	24870 ps

MC10EP195, MC100EP195

Multi-Channel Deskewing

The most practical application for EP195 is in multiple channel delay matching. Slight differences in impedance and cable length can create large timing skews within a high-speed system. To deskew multiple signal channels, each channel can
be sent through each EP195 as shown in Figure 8. One signal channel can be used as reference and the other EP195s can be used to adjust the delay to eliminate the timing skews. Nearly any high-speed system can be fine-tuned (as small as 10 ps) to reduce the skew to extremely tight tolerances.

Figure 8. Multiple Channel Deskewing Diagram

Measure Unknown High Speed Device Delays

EP195s provide a possible solution to measure the unknown delay of a device with a high degree of precision. By combining two EP195s and EP31 as shown in Figure 9, the delay can be measured. The first EP195 can be set to SETMIN and its output is used to drive the unknown delay device, which in turn drives the input of a D flip-flop of EP31. The second EP195 is triggered along with the first EP195 and its output provides a clock signal for EP31. The programmed delay of the second EP195 is varied to detect the output edge from the unknown delay device.

If the programmed delay through the second EP195 is too long, the flip-flop output will be at logic high. On the other hand, if the programmed delay through the second EP195 is too short, the flip-flop output will be at a logic low. If the programmed delay is correctly fine-tuned in the second EP195, the flip-flop will bounce between logic high and logic low. The digital code in the second EP195 can be directly correlated into an accurate device delay.

Figure 9. Multiple Channel Deskewing Diagram

MC10EP195, MC100EP195

Figure 10. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC10EP195FA	LQFP-32	250 Units / Tray
MC10EP195FAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC10EP195FAR2	LQFP-32	2000 / Tape \& Reel
MC10EP195FAR2G	LQFP-32 (Pb-Free)	2000 / Tape \& Reel
MC10EP195MNG	$\begin{gathered} \text { QFN-32 } \\ \text { (Pb-Free) } \end{gathered}$	74 Units / Rail
MC10EP195MNR4G	$\begin{gathered} \text { QFN-32 } \\ \text { (Pb-Free) } \end{gathered}$	1000 / Tape \& Reel
MC100EP195FA	LQFP-32	250 Units / Tray
MC100EP195FAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC100EP195FAR2	LQFP-32	2000 / Tape \& Reel
MC100EP195FAR2G	LQFP-32 (Pb-Free)	2000 / Tape \& Reel
MC100EP195MNG	$\begin{aligned} & \text { QFN-32 } \\ & \text { (Pb-Free) } \end{aligned}$	74 Units / Rail
MC100EP195MNR4G	QFN-32 (Pb-Free)	1000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC10EP195, MC100EP195

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {TM }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC10EP195, MC100EP195

PACKAGE DIMENSIONS

MC10EP195, MC100EP195

PACKAGE DIMENSIONS

QFN32 5*5*1 0.5 P
CASE 488AM-01
ISSUE O

NOTES:

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
TERMINAL AND IS MEASURED
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS

	MILLIMETERS		
DIM	MIN	NOM	MAX
A	0.800	0.900	1.000
A1	0.000	0.025	0.050
A3	0.200 REF		
b	0.180		
D	5.00 BSC		
D2	2.950	3.300	
E	5.00 BSC		
E2	2.950	3.250	
e	0.500		
K	0.200	3.250	
L	0.300	0.400	0.0

BOTTOM VIEW

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

